Multiphoton Intrapulse Interference 8. Coherent control through scattering tissue.
نویسندگان
چکیده
We demonstrate experimentally that selective two-photon probe excitation using phase shaped pulses can be achieved even when the laser propagates through scattering tissue. The pre-optimized phase tailored femtosecond pulses were able to identify acidic and basic solutions of a pH sensitive chromophore hidden behind a slab of scattering tissue. This observation has important implications for future applications of coherent control for biomedical imaging and photodynamic therapy.
منابع مشابه
Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods
Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...
متن کاملAutomated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air.
We introduce a non-interferometric single beam method for automated spectral phase characterization and adaptive pulse compression of amplified ultrashort femtosecond pulses taking advantage of third order harmonic generation in air. This new method, air-MIIPS, compensates high-order phase distortions based on multiphoton intrapulse interference phase scan (MIIPS).
متن کاملGroup-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan.
The use of femtosecond lasers requires accurate measurements of the dispersive properties of media. Here we measure the second- and third-order dispersion of water, seawater, and ocular components in the range of 660-930 nm using a new method known as multiphoton intrapulse interference phase scan. Our direct dispersion measurements of water have the highest precision and accuracy to date. We f...
متن کاملUse of coherent control methods through scattering biological tissue to achieve functional imaging.
We test whether coherent control methods based on ultrashort-pulse phase shaping can be applied when the laser light propagates through biological tissue. Our results demonstrate experimentally that the spectral-phase properties of shaped laser pulses optimized to achieve selective two-photon excitation survive as the laser pulses propagate through tissue. This observation is used to obtain fun...
متن کاملMultiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation.
We introduce a noninterferometric single beam method to characterize and compensate the spectral phase of ultrashort femtosecond pulses accurately. The method uses a pulse shaper that scans calibrated phase functions to determine the unknown spectral phase of a pulse. The pulse shaper can then be used to synthesize arbitrary phase femtosecond pulses or it can introduce a compensating spectral p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 12 17 شماره
صفحات -
تاریخ انتشار 2004